
  

  

Abstract—Stochastic computing (SC) is an approximate 
computing technique that has been considered in recent 
years as an alternative to conventional binary encoding 
and is compatible with CMOS technology. Stochastic 
circuits have the advantages of low power, small area, and 
high fault tolerance. However, highly accurate 
computation often takes a lot of time because of the 
fluctuations in random numbers and the requirement for 
decorrelation between random bitstreams. In this work, 
mean circuits are proposed to exploit the correlation 
between the random bitstreams for an arbitrary number 
of inputs. With the proposed mean circuit, high-accuracy 
and low-cost mean filtering designs are implemented. 
Experimental results indicate that the implementations of 
mean filtering show 10% and 93% reductions in area and 
power, compared with multiplexer-based designs. 

Keywords—Mean circuit, correlated bitstream, 
stochastic computing. 

I. INTRODUCTION 

Stochastic computing (SC) [1] has recently regained 
significant attention due to its fault tolerance [2] and low 
hardware cost of arithmetic units. It has been applied to image 
processing [3, 4], neural networks (NNs) [5, 6], and digital 
filters [7, 8]. Stochastic numbers are represented by random 
bitstreams composed of 0s and 1s. There are two basic number 
formats in SC: the unipolar and bipolar representations. In the 
unipolar representation, SC encodes numbers in the range [0, 
1]. The number of 1s in a bitstream divided by the length of the 
bitstream, denoted by Px here, encodes the actual value X. For 
example, 01111011 represents 6/8. In the bipolar 
representation, the numerical value of X is 2Px – 1, so the range 
of bipolar format is [-1, 1]. For example, 01111011 represents 
4/8. A stochastic number generator (SNG) is usually composed 
of a liner-feedback shift register (LFSR) and a comparator, as 
shown in Fig. 1. In each clock cycle, if the binary number n is 
greater than the number generated by the LFSR, a 1 or a 0 is 
generated. 

Stochastic arithmetic operations can be performed in a very 
simple form. For example, the unipolar multiplication can be 
implemented by an AND gate, as shown in Fig. 2(a); the 
implementation of unipolar and bipolar scaled addition can be 
achieved by just a multiplexer, as shown in Fig. 2(b). 
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In SC, the computing accuracy depends on the stochastic 
computing correlation (SCC) [9]. Independent bitstreams are 
necessary to achieve high accuracy. The relationship between 
bitstreams is determined by SCC, which indicates the degree 
of similarity between two bitstreams. When SCC=0, two 
bitstreams are said to be independent of each other, while on 
the occasion that SCC=1 or SCC= -1, it is called a positive or 
negative correlation. Positively and negatively correlated 
bitstreams can be generated by sharing an LFSR, as shown in 
Figure 3. However, in order to generate independent bitstreams, 
one way is to use multiple LFSRs and another way is to use a 
decorrelated circuit [10, 11]. However, utilizing the correlation 
between bitstreams is also an effective approach [12, 13], as in 
[14] a positively correlated unipolar absolute subtraction is 
used, as shown in Fig. 2(c). An OR gate can implement 
unipolar addition by using negatively correlated bitstreams, as 
shown in Fig. 2(d). In this paper, we focus on the unipolar 
correlation mean circuit design in SC and improve the accuracy 
of the circuit by changing the random number source of the 
circuit. It is experimentally demonstrated that the proposed 
mean circuits perform with higher accuracy than previous 
designs. 

The rest of the paper proceeds as follows. Section II 
presents the background. Section III describes the design 
principles of the proposed circuits. Section IV shows the 
experimental results and application of mean circuits. Section 
V gives a summary. 

F. Li, G. Xie, and Y. Zhang are with the School of Microelectronics, Hefei 
University of Technology, Hefei 230009, China (e-mail: 535413508@qq.com; 
gjxie8005@hfut.edu.cn; ahzhangyq@hfut.edu.cn) 

J. Han is with the Department of Electrical and Computer Engineering, 
University of Alberta, Edmonton, AB T6G 1H9, Canada (e-mail: 
jhan8@ualberta.ca) 

Mean Circuit Design Using Correlated Random Bitstreams in 
Stochastic Computing 

Feiyu Li, Guangjun Xie, Jie Han, Senior Member IEEE, Yongqiang Zhang, Member, IEEE 

 
Figure 1.  A stochastic number generator (SNG). 

 
Figure 2.  Stochastic arithmetic operations. (a) Unipolar multiplication. (b) 
Unipolar and bipolar scaled addition. (c) Positively correlated unipolar 
absolute subtraction. (d) Negatively correlated unipolar addition. 
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II. BACKGROUND 

A. Stochastic Mean Circuits (SMCs) 
A 2-input multiplexer (MUX) can realize the function PZ = 

PSPX+(1-PS)PY, where Px and Py are the inputs, PS is the select 
signal. When PS = 0.5, PZ = 0.5(Px+ Py), so it is a 2-to-1 SMC. 
Fig. 4 shows some conventional SMCs [15], which compute 
the average of 2n input bitstreams. Such a circuit uses one 
multiplexer with 2n inputs and n uncorrelated bitstreams as 
select signals. By changing the input as well as the select signal, 
a mean circuit for different inputs can be obtained. For example, 
a 16-to-1 SMC can be changed to a 9-to-1 SMC, where its first 
8 ports are for different inputs, the last 8 ports are for the same 
inputs, and the 4 select signals are set to 0.5, 0.5, 0.5, and 
0.1111. The bitstreams for the select signals must be of mutual 
independence.  

B. Absolute Valued Subtraction 
Under certain specific conditions, correlation can be used 

to design stochastic computation elements with correlated 
input bitstreams. An XOR gate with independent inputs 
performs the function z = x1(1 - x2) + x2(1 - x1). However, for 
positively correlated inputs where x1 and x2 have a maximum 
overlap of 1s, the circuit computes z = |x1 - x2| [13]. If x1 is 
greater than x2, the output z = x1 - x2. 

C. Correlation Addition 
An OR gate with independent inputs performs the function 

z = x1 + x2 + x1x2. If negatively correlated inputs are used, the 
circuit computes z = max(1, x1 + x2). If x1 + x2 is less than 1, 
the output is x1 + x2. 

III. THE PROPOSED MEAN CIRCUITS 

In this section, the stochastic mean circuits are presented by 
using correlated input bitstreams, so it is referred to as 
CORSMCs. The design of the proposed mean circuits consists 
of three steps: the first step is to generate coefficients, the 

second step realizes the multiplication of the coefficients and 
inputs, and the third step realizes the summation of the products. 

Absolute valued subtraction is used in the first step of the 
design [14]. If x1 is larger than x2, the circuit computes z = x1 - 
x2, and the result shows that the output bitstreams z is 
negatively correlated with the input bitstreams. By sharing a 
random number source, the SNG first generates Pn = 1, N-1/N, 
N-2/N, ... 1/N. These n bitstreams are all positively correlated. 
Each bitstream needs to be subtracted from the neighboring 
bitstreams on the right to obtain n bitstreams with the value 1/N 
whose sections of ’1’s are interleaved. The XOR gate is used 
to implement subtraction. These n negatively correlated 
bitstreams are used to encode the mean coefficients.  

The second step consists of using some AND gates. The n 
input bitstreams are first generated by other random number 
sources. After that, the products of the coefficients and the 
inputs are realized using AND gates. The last step is to 
implement the negatively correlated addition. Since the sum of 
coefficients is 1 and the multiplication use AND gates, the 
result must be less than the maximum value of inputs. Thus, 
the result of the addition is less than or equal to 1. The 
correlation-based stochastic mean circuit (CORSMC) is shown 
in Fig. 5.  

This design needs to generate two independent bitstreams, 
so two different random number sources are needed. For the 
random number sources, two LFSRs can be taken, or a counter 
can be used as the random number source, while the other 
random number source takes the inverse of the counter to 
produce a Halton sequence [16, 17]. For example, if X1 = 001, 
010, 011, … in a 3-bit bipolar encoding format, X2 = flip (X1) 
becomes 100, 010, 110, .... This can greatly improve the 
computing accuracy of the final results. 

 
Figure 3.  The generation of (a) positively and (b) negatively correlated 
stochastic bitstreams. 
  

Figure 4.  Stochastic mean circuits. (a) 3-to-1 SMC. (b) 4-to-1 SMC. (c) 9-
to-1 SMC. (d) 16-to-1 SMC. 
 



  

IV. EXPERIMENTAL RESULTS 

A. Computing Accuracy 
This subsection compares the errors of the SMC and 

CORSMC by measuring the mean absolute error (MAE). MAE 
is defined as 

 
1
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n
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i
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n =
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Three-, four-, and nine-input mean circuits are compared. 
Bitstream lengths of 16, 64, 128, 256, 512, and 1024 are 
considered. One thousand sets of random inputs are selected 
for the experiment. The input numbers are randomly generated. 
The experiment is repeated for different bitstream lengths. For 
the CORSMC, a random number source, a counter, and LFSRs 
are used respectively. The SMC uses LFSRs as random number 
sources. The experimental results are shown in Fig. 6. 

B. Mean Filter 
Mean filtering uses simple algorithms and has the 

advantage of fast operation. Mean filtering usually takes a 
window of n×n. In this paper, a window of 3×3 is used, as 
shown in Fig. 7. This design takes an average of 9 pixels for 
replacing the pixel values at the center, The experiment selects 
a gray-scale image with an 8-bit representation for each pixel 

and injects salt & pepper noise with a noise density of 0.01. 
Subsequently, we normalize the pixel values to the range [0, 1] 
so as to be processed in the SC domain. Peak Signal to Noise 
Ratio (PSNR) is the metric used to assess the accuracy. 
Simulation results under different methods are shown in 
TABLE I. Fig. 8 shows the original and processed images 
using different methods. 

 

 

 
Figure 6.  Mean absolute error for (a) 2-to-1 CORSMC (LFSR), 2-to-1 
CORSMC (COUNTER), and 2-to-1 SMC. (b) 4-to-1 CORSMC (LFSR), 4-
to-1 CORSMC (COUNTER), and 4-to-1 SMC. (c) 9-to-1 CORSMC (LFSR), 
9-to-1 CORSMC (COUNTER), and 9-to-1 SMC. 

 
Figure 7.  A 3×3 window. 
 

 

 
Figure 5.  The proposed (a) 2-to-1 CORSMC. (b) 4-to-1 CORSMC. (c) 9-to-
1 CORSMC. 
 



  

C. Hardware Evaluation 
Mean circuits consist of an SNG and a bitstream processing 

module. TABLE Ⅱ lists the hardware measurements of the 
proposed design and the previous design by using the Synopsys 
design compiler and the TSMC 40 nm technology library. The 
area, power, delay, area-delay product (ADP), power-delay 
product (PDP), and energy-delay product (EDP) of 9-to-1 
mean circuits are shown. This data just includes the bitstream 
processing units without SNGs. The CORSMC only needs two 
random number sources, because it requires only two types of 
independent bitstreams. The SMC needs at least two random 
number sources because it requires at least two types of 
uncorrelated bitstreams. So, the CORSMC requires a smaller 
number of random number sources than the SMC. Specifically, 
the experimental results show that the CORSMC reduces 10% 
in area, 93% in power, 6% in latency, 25% in ADP, 93% in 
PDP, and 92% in EDP compared to the SMC. 

V. CONCLUSION 
In this paper, mean circuits are proposed by utilizing 

correlated bitstreams. Experimental results show that the 
performance of the proposed mean circuits is higher than that 
of the previous design. Meanwhile, the proposed design 
overcomes the limitation on the number of inputs. Finally, the 
implementation of a mean filter using the proposed 9-to-1 
CORSMC is realized. Future work will focus on the design of 
mean circuits with a larger number of inputs and other related 
applications. 
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TABLE I. ACCURACY IN PSNR OF THE 3×3MEAN FILTER USING DIFFERENT MEAN CIRCUITS 
N=2k 24 25 26 27 28 29 210 
SMC 27.54 30.16 33.58 37.60 40.61 43.12 46.51 

CORSMC (LFSR) 28.85 32.60 36.94 39.18 45.29 50.34 55.58 
CORSMC (COUNTER) 29.25 33.75 38.28 44.30 49.34 55.37 59.51 

 
TABLE Ⅱ. THE AREA, POWER, DELAY, ADP, PDP, AND EDP FOR DIFFERENT MEAN CIRCUITS 

 Area (μm2) Power (μW) Delay (ns) ADP (μm2×ns) PDP (10-3pJ) EDP (10-24Js) 
SMC 23.34 5.83 0.52 12.13 3.03 1.57 

CORSMC 20.93 0.43 0.49 9.00 0.21 0.11 
 

 
Figure 8.  Mean filtering with a 3×3 kernel for sequence length of 256 bits. (a) Original image. (b) Noisy image with salt & pepper noise with density 0.01. 
(c) Filtered image using MATLAB. (d) Processed image using 9-to-1 SMC and (e) 9-to-1 CORSMC. 
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